The Business Advantages of a Multi-GNSS Setup

2022-08-10 07:34:07
关注

The Internet of Things (IoT) connects a steady information stream between the people and processes powering the world. Global Navigation Satellite Systems (GNSS) provide critical timing and positioning functions for device operations. 

GNSS uses satellite technology to provide insight into connected devices’ geographic locations. GNSS is an inclusive term for the category of global systems, including: 

  • Global Positioning System (GPS)  
  • Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS)  
  • BeiDou  
  • Galileo  

When more than one constellation is used simultaneously, the benefits of those systems combine for improved satellite coverage and overall performance.  

In addition, the regional satellite-based augmentation systems (SBAS) assist the global systems:  

  • Wide Area Augmentation System (WAAS) in North and South America
  • European Geostationary Navigation Overlay Service (EGNOS) in Europe
  • GPS Aided GEO Augmented Navigation (GAGAN) in India
  • MTSAT Satellite-Based Augmentation System (MSAS) in Japan

All are vital concerns to consider when choosing how many systems to utilize in IoT endeavors. 

As global demand for connectivity increases, businesses can expect to see more integration of GNSS technologies. Which GNSS platforms are available today, and how do they differ? 

4 GNSS Systems and Their Unique Features

GPS (United States)

While GPS and GNSS are often used interchangeably, GPS is the world’s most utilized satellite navigation system. It operates from 32 satellites across six orbital planes. Developed in the United States for military use, we now see GPS in-car navigation and business tagging in social media. A high-accuracy multifrequency GPS using Precise Point Positioning (PPP) or Real-Time Kinematic (RTK) techniques can identify spatial locations down to 10 centimeters or fewer.

GLONASS (Russia)

Like GPS, GLONASS was designed during the 1970s as Russia’s military positioning system. Commercial applications (e.g., transmitting navigation positioning and weather broadcasts) started in the 1980s with the deployment of 24 satellites across three orbital planes.

BeiDou (China)

Since 2000, China’s BeiDou Navigation Satellite System (BDS) has been on the rise to overtake GPS in global commercial usage. In its third generation, BeiDou claims to reach a millimeter-level accuracy that outperforms other systems.

Galileo (EU)

Developed by the European Union in 2011, Galileo will consist of 30 satellites when it is fully operational (i.e., 24 working satellites with six spares). It provides a more accurate positioning service at higher latitudes than other GNSS systems by using over 24 satellites in six orbital planes. Galileo is currently providing emergency response services and making Europe’s roads and railways safe for everyone.

4 Benefits of Using Multiple Constellation GNSS Receivers at Once

Modern positioning and timing modules have evolved to take advantage of multiple GNSS constellations at once. Combining multiple satellite systems:

  • Improves signal availability
  • Gives operators more access
  • Increases accuracy

Whether you’re navigating in a crowded city or a vast desert, multiple GNSS systems help you stay connected and centered while providing continuous positioning. 

Industries and businesses can achieve the following benefits:

  1. Added Security
    In the unlikely event that a satellite fails, GNSS receivers will automatically remove it from the navigation solution.
  2. Multiple Pathways
    Access to multiple satellites increases visibility in regions with natural or artificial obstructions. (Urban canyons are created by tall, clustered buildings and can impact single-frequency GNSS accuracy.) This access improves Time to First Fix (TTFF), a measure of the time needed for a GNSS-connected device to determine its location from power-up.
  3. Future Proofing
    Integrating multiple GNSS systems helps industries and businesses with future-proofing their products and services. Changes in each system mirror changes in the marketplace at varying rates.
  4. Increased Data Integrity
    Galileo provides increased security features for multiple industries, including:
  • Maritime
  • Rail
  • Logistics
  • Automotive

Layering multiple systems like Galileo with GPS casts a wider net in terms of reach and accuracy. 

Evolution of Low-Power GNSS Solutions

Historically, GNSS receivers have consumed considerable amounts of power. The power consumption requirements have dropped dramatically over the last decade. Today’s GNSS receivers often have many configuration options, allowing users to manage power consumption and adapt functionality to specific use cases. The most challenging use cases for achieving a perfect balance between GNSS capabilities and power consumption include small IoT devices requiring near-continuous connectivity (e.g., pet or child trackers and smartwatches). 

Devices that rely on multiconstellation GNSS tend to consume more power since they require more energy for seeking connections with various satellite signals. Because different GNSS constellations use varying frequency bands, receivers must use more power to track multiple sources.  

4 Ways to Minimize GNSS Receiver Power Consumption

With any IoT device design, there are trade-offs when it comes to functionality and energy consumption. If your use case requires constant connectivity, the device won’t be able to go into a power-conserving sleep mode for long. While trade-offs remain a reality, there are opportunities to minimize GNSS receiver power consumption within a device.  

  1. Selecting Components
    Each component in the GNSS receiver can be selected with care to reduce overall power consumption. Including a backup battery can prevent situations in which power interruptions cause the receiver to reboot. Cold startups consume a significant amount of power. Having a backup battery to keep the receiver operational during outages allows the device to resume operation quickly and use less power. The oscillator is another component that can reduce or increase power usage. However, it must be chosen carefully based on the use case. If temperature fluctuations are possible in deployment (e.g., if the receiver will be in a logistics tracker on a ship or truck), choosing a temperature-controlled crystal oscillator (TCXO) might be wise. A TCXO reduces power while increasing receiver sensitivity. Other components that can affect power consumption include the real-time clock (RTC) and active antennas. Telit integrates RTCs and TCXOs for optimal performance in our GNSS receivers. This integration helps customers save time to market with a ready-to-use product. 
  1. Reducing Update Rate to Utilize Power Save Modes
    GNSS receivers might need to update their position once per second, hour or day depending on the use case. Ensuring the receiver’s update rate matches the use case needs allows operators to minimize power consumption and let devices enter Power Save Mode (PSM) between updates. Today’s GNSS receivers typically include at least one of these PSM options: 
  • Cyclic Tracking  
    Cyclic tracking PSM relies on a reduced-power tracking mode that does not seek new satellites. While not ideal for remotely deployed devices that rely on weak signals, this mode saves considerable power for receivers that enjoy strong, consistent satellite signals. 
  • On/Off Operation 
    The receiver can switch to a deep sleep mode (OFF) in this PSM, reducing power consumption. For devices that require check-ins once or twice per day, this is an excellent choice. 
  • Continuous Tracking 
    After an initial connection to check position, the receiver uses this mode to minimize power consumption while maintaining a continuous connection. This PSM is ideal for use cases requiring near-constant updates on position, such as sports or vehicle trackers. 
  1. Cloud-Based Processing 
    Outsourcing complex computing processes to the cloud is another way for GNSS receivers to minimize power consumption at the end device. With a practice called snapshot positioning, the GNSS receiver carries out reception and processing tasks, but a cloud-based service calculates the actual position.  
  1. Optimizing Power in Multiconstellation GNSS 
    Multiconstellation functionality increases accuracy and provides more continuous positioning updates, but there are trade-offs. When receivers track multiple GNSS constellations, they use more power — especially when different frequency bands are involved. One way to save energy while utilizing multiconstellation GNSS is by paying attention to which constellations your receivers will track depending on their location. Instead of tracking every available constellation, choose a few most likely to provide accurate positioning in the area where the devices are deployed. Try to minimize how many radio frequency (RF) bands the receivers will need to use. 

Finding the Right Multi-Constellation Solutions for the Future

Telit offers many solutions for those curious about which services exist for utilizing signals from multiple GNSS constellations while minimizing power consumption. Telit is one of the few IoT companies delivering different combinations of multiple GNSS solutions for its customers. Test one of our GNSS modules in your application. 


Editor’s Note: This blog was originally published on 6 March 2018 and has since been updated. 

参考译文
多gnss设置的业务优势
物联网(IoT)在驱动世界的人和流程之间建立了稳定的信息流。全球导航卫星系统(GNSS)为设备运行提供了关键的计时和定位功能。GNSS利用卫星技术,提供关于联网设备地理位置的洞察。GNSS是全球性系统类别的统称,包括以下几种系统:- 全球定位系统(GPS)- 全球导航卫星系统(GLONASS)- 北斗- 伽利略当同时使用多个卫星星座时,这些系统的益处可以融合,从而提升卫星覆盖范围和整体性能。此外,区域性的卫星增强系统(SBAS)也对全球系统提供辅助,例如:- 北美和南美的广域增强系统(WAAS)- 欧洲的地球静止轨道导航增强服务(EGNOS)- 印度的GPS辅助静止轨道增强导航系统(GAGAN)- 日本的MTSAT卫星增强系统(MSAS)在物联网应用中,选择使用多少系统至关重要。随着全球对连接性的需求不断增长,企业预计将看到GNSS技术的更多融合。如今,有哪些GNSS平台可用?它们之间又有哪些差异?**4种GNSS系统及其特点****GPS(美国)** 虽然GPS和GNSS经常互换使用,但GPS是世界上使用最广泛的卫星导航系统。它由分布在六个轨道平面上的32颗卫星组成。最初由美国为军事用途开发,如今我们可以在汽车导航和社交媒体中的位置标签中看到GPS的应用。通过使用精密单点定位(PPP)或实时动态定位(RTK)技术,高精度多频GPS可识别空间位置,精度可达10厘米甚至更低。**GLONASS(俄罗斯)** 与GPS类似,GLONASS于20世纪70年代为俄罗斯的军事定位系统而设计。20世纪80年代,部署了分布在三个轨道平面上的24颗卫星,商业应用(如导航定位和天气广播)开始兴起。**北斗(中国)** 自2000年以来,中国的北斗导航卫星系统(BDS)已逐步发展,致力于在全球商用使用中超越GPS。在第三代系统中,北斗宣称其精度可达毫米级别,优于其他系统。**伽利略(欧盟)** 由欧盟于2011年开发,伽利略系统在完全部署时将由30颗卫星组成(包括24颗运行卫星和6颗备用卫星)。它通过分布在六个轨道平面上的超过24颗卫星,在高纬度地区提供比其他GNSS系统更精确的定位服务。目前,伽利略正在为应急响应服务提供支持,并使欧洲的公路和铁路更加安全。**4种同时使用多个星座GNSS接收器的优势** 现代的定位和计时模块已经发展到可同时利用多个GNSS星座。结合多个卫星系统:- 提高信号可用性- 增加操作员的接入机会- 提高定位精度无论您是在拥挤的城市还是广阔的沙漠中航行,多个GNSS系统都能帮助您保持连接和中心定位,提供持续的定位服务。行业和企业可以实现以下优势:**增强安全性** 在卫星发生故障的极小概率情况下,GNSS接收器会自动将其从导航解决方案中移除。**多重路径** 接入多个卫星增加了在有自然或人为障碍区域的可见性(例如,由高楼大厦形成的“城市峡谷”可能影响单频GNSS的精度)。这种接入方式提高了首次定位时间(TTFF),即GNSS连接设备从开机到确定其位置所需的时间。**未来导向** 整合多个GNSS系统有助于行业和企业为未来做好准备。各个系统的演变反映了市场变化的不同速度。**数据完整性提升** 伽利略为多个行业提供增强的安全功能,包括:海事、铁路、物流和汽车。将伽利略与GPS等系统叠加,可以扩大覆盖范围并提高定位精度。**低功耗GNSS解决方案的发展历程** 传统上,GNSS接收器消耗大量能量。在过去十年中,功率消耗要求大幅下降。如今的GNSS接收器通常有许多配置选项,让用户能够管理能耗并根据特定用例调整功能。在实现GNSS能力和功率消耗之间完美平衡的最具挑战性的用例包括需要近乎连续连接的小型物联网设备(例如宠物或儿童追踪器和智能手表)。依赖多星座GNSS的设备往往消耗更多电量,因为它们需要更多能量来搜索多个卫星信号。由于不同GNSS星座使用不同的频段,接收器必须使用更多能量来追踪多个来源。**4种降低GNSS接收器功耗的方法** 在任何物联网设备设计中,功能和能耗之间都存在折衷。如果您的应用场景要求持续连接,设备就无法长时间进入低功耗睡眠模式。尽管这种折衷是现实,但仍有机会在设备中降低GNSS接收器的功耗。**选择合适的组件** GNSS接收器中的每一个组件都可以精心选择以减少整体功耗。加入备用电池可以在电源中断时避免接收器重启。冷启动会消耗大量能量。拥有备用电池可在断电期间保持接收器运行,使设备快速恢复操作并减少功耗。振荡器是另一个影响功率使用的组件,但必须根据应用场景仔细选择。如果部署中可能会出现温度波动(例如,接收器在船舶或卡车上的物流追踪器中),选择温控晶体振荡器(TCXO)可能是明智之举。TCXO可减少功耗,同时提高接收器灵敏度。其他可能影响功耗的组件包括实时时钟(RTC)和有源天线。Telit在GNSS接收器中集成了RTC和TCXO,以实现最佳性能。这种集成可帮助客户节省上市时间并提供即用型产品。**降低更新频率以利用省电模式** GNSS接收器根据用例可能需要每秒、每小时或每天更新一次位置。确保接收器的更新频率与用例匹配,可以让操作员最小化功耗,并在更新之间让设备进入省电模式(PSM)。如今的GNSS接收器通常至少包含以下一种PSM选项:- **循环追踪** 此模式依赖低功耗追踪模式,但不搜索新卫星。对依赖弱信号的远程部署设备来说并非理想,但对于接收强且持续卫星信号的接收器来说,此模式可显著节省电量。- **开关操作** 此模式下,接收器可以切换至深度睡眠模式(关闭),从而减少功耗。对于每天一次或两次检查的设备来说,这是一个绝佳选择。- **持续追踪** 在首次连接以检查位置后,接收器使用该模式以最小化功耗,同时保持持续连接。此PSM适用于需要近乎持续位置更新的用例,如运动或车辆追踪器。**基于云的处理** 将复杂的计算过程外包到云端是GNSS接收器在设备端降低功耗的另一种方式。通过一种叫做快照定位的实践,GNSS接收器执行接收和处理任务,但实际位置计算由云服务进行。**优化多星座GNSS的功耗** 多星座功能可以提高精度并提供更连续的定位更新,但也有相应的折衷。当接收器追踪多个GNSS星座时,会消耗更多电力——尤其是在涉及不同频段时。一种节省能量的方式是根据接收器的地理位置,关注它将追踪的星座。不必追踪所有可用的星座,而是选择最有可能在设备部署区域提供准确定位的几个星座。同时,尽量减少接收器需要使用的射频(RF)频段数量。**为未来寻找合适的多星座解决方案** Telit为那些希望了解如何利用多GNSS星座信号并同时最小化功耗的用户提供了多种解决方案。作为少数几家为客户提供不同组合多GNSS解决方案的物联网公司之一,Telit可以满足各种需求。尝试在您的应用中测试我们的GNSS模块之一。**编辑注**:本文最初于2018年3月6日发布,此后进行了更新。
您觉得本篇内容如何
评分

相关产品

MicroStrain by HBK 3DM-GX5-45™ 惯性导航系统 ( INS )

3DM-GX5-45一体化导航解决方案采用了一种高性能的多星座GNSS接收机,利用GPS、GLONASS、北斗和伽利略卫星星座。计算输出包括俯仰、横摇、偏航、航向、位置、速度和GNSS输出,使其成为一个完整的GNSS/INS(GNSS辅助惯性导航系统)解决方案。微机电系统(MEMS)技术的应用提供了一种高精度、小型化、轻量化的器件。主感应MIP监控软件可用于设备配置、实时数据监控和记录。或者,MIP数据通信协议可用于开发自定义接口和方便的OEM集成。

EYESTAR 眸星科技 高精度MEMS组合导航系统 B684-D 组合导航

B684-D高精度MEMS组合导航系统,内置全星座多频点GNSS模组、高性能陀螺仪与加速度计,采用最新自研算法引擎及IMU阵列技术(IMU Array),实时提供高精度载体位姿信息。

评论

您需要登录才可以回复|注册

提交评论

广告
提取码
复制提取码
点击跳转至百度网盘