How Is Gigabit LTE Different from 5G?

2023-03-29 13:21:07
关注

Gigabit LTE: The 4G Solution for High-Speed Cellular Broadband

5G receives much attention as it has become table stakes for consumers. Gigabit LTE, the 4G technology that introduced no-pause streaming video on our smartphones, is its lesser-known precursor. It’s an evolution of 4G LTE that can provide dependable mobile broadband access at speeds surpassing wired broadband.  

Coverage is improving fast as carriers roll out 5G at breakneck speed. However, Gigabit LTE remains available with nationwide coverage worldwide. 5G is a recent technology with new radio waveforms and new modems. Therefore, the price of 5G will be higher than 4G products for some time.  

The cost of the new 5G chipsets will include a price premium because of all the new features in the devices. On the other hand, 4G device prices will decrease as they achieve an economy of scale with large deployments. 

Gigabit LTE vs. 4G LTE 

A greater focus on data transmission came with the fourth-generation mobile communication standard (4G). Previous cellular standard generations (2G and 3G) centered on voice and text capabilities, catering to pre-smartphone consumers.  

For smartphones and mobile broadband communication, the LTE-Advanced (LTE-A) standard was approved in 2011 (3GPP Release 10). It delivered peak download data rates of 1 Gbps. 

LTE-Advanced Pro (LTE-A Pro) enhanced Gigabit LTE capabilities. 3GPP approved this standard circa 2015 with Release (Rel) 13. LTE-A Pro took 4G a step further. It provided peak download speeds into the 3 Gbps range, depending on networks’ availability of high carrier aggregation  (up to 32 20-MHz carriers allowed in LTE-A Pro).  

Key 5G technologies and strategies enable LTE-A Pro to prove the robustness and resilience of these ultrahigh-speed connections. The connection speed can be faster than wired broadband. Those include: 

Carrier Aggregation 

Four Antennas Help LTE Achieve 1 Gigabit Per Second Speeds Allowing for Novel Applications

Mobile network operators (MNOs) can provide increased data speeds. They combine the data-carrying capabilities from multiple sections of the radio spectrum, known as “carriers,” to send and receive data.  

Carrier aggregation combines an MNO’s often non-contiguous carriers within one or more spectrum bands. It expands data pathway width and carrying capacity to allow for higher capacity and speeds. Gigabit LTE requires five or more carriers aggregated to push theoretical data rates to peak at levels higher than 3 Gbps.  

With 5G taking more spectrum share, the industry trend will eventually migrate all devices to 5G. However, that will take more than a decade to happen. Until then, LTE will fill the gap for mid-tier devices.  

With 3xCA, LTE devices will get decent speeds for many broadband use cases. In addition, high-tier devices that require multigigabit speeds will eventually migrate to 5G. 

License Assisted Access (LAA) 

To increase data-carrying radio spectrum capacity, LAA uses the unlicensed 5 GHz band in conjunction with the MNO’s licensed spectrum. Licensed spectrum is known as “cleared spectrum.” Nobody other than the licensee is using that spectrum within the regional boundaries of the license.  

Unlicensed spectrum is available for various uses like Wi-Fi, which also functions within the 5 GHz band. LAA must work around these other users to apply techniques like Listen-Before-Talk (LBT) function to identify and utilize unused channels. 

256-QAM 

Quadrature Amplitude Modulation (QAM) is an efficient two-domain encoding strategy. It leverages amplitude and frequency modulations to encode information in the radio waveforms. The higher the QAM number, the more information the waveforms can carry.  

Before 256-QAM, there was 64-QAM. When 64-QAM is used, 6 bits of information can be in each encoded symbol, so 2^6 equals 64. In 256-QAM, 8 bits of data can be packed in the same symbol, so 2^8 equals 256. 256-QAM bit rates are 30% faster than 64-QAM bit rates.  

This increased data rate means 256-QAM requires a better signal-to-noise ratio (SNR) than 64-QAM. So when a radio is in good reception and gets a strong signal, it can perform 30% better than the older system based on 64-QAM. 

4 x 4 Multiple-Input and Multiple-Output (MIMO) Technology 

As carrier aggregation achieves higher bandwidths with multiple carriers, so does MIMO with multiple antenna paths per band. Gigabit LTE networks have standardized four antennas on the base station and four on the device. These antennas improve spectral efficiency and data speeds, allowing the equipment to connect with the steadiest available signals. 

Gigabit LTE vs. 5G 

While Gigabit LTE and 5G are similar, a few key details set them apart. 5G adds new bands in available frequencies in the sub-6 GHz range and ultrahigh millimeter wave (mmWave) spectrum (up to 40 GHz). 4G is mostly deployed in the lower frequencies (up to 2.5 GHz) except for a few bands in 3.5 GHz (also called mid-band).  

Furthermore, 4G spectrum is limited to a maximum bandwidth of 20 MHz. This means each 4G carrier’s capacity is limited to 20 MHz. On the other hand, 5G defines new spectrum bands that are 100 MHz wide. We can imagine how aggregating a few carriers can achieve high speeds in 5G. 

Since bandwidth-rich mmWave cells cover small areas, dense concentrations are necessary to achieve target user experience levels. A 5G experience significantly different from Gigabit LTE requires constructing new infrastructure, which will take time. 

Another differentiator is that 5G networks can work in two modes: stand-alone (SA) or non-stand-alone (NSA). SA indicates that the system operates with all 5G radio and core networks. NSA uses LTE and 5G resources combined in different modes.  

With 3GPP Rel 16 published in 2020, 5G became a solid alternative to wired networks used in critical industrial processes. These processes are dominated by various wire and fiber-based time-sensitive networks (TSN). Rel 16’s ultrareliable low latency communication (URLLC) capabilities specify link reliability better than 99.9999% and latencies in the millisecond range. 

Applications and Use Cases of Gigabit LTE Networks 

Gigabit LTE’s broad availability and falling connectivity costs offer the advantage of easier adoption. Unlike 5G, it doesn’t require constructing new towers or redesigning device antennas to cope with mmWave or URLLC technologies’ demands. Gigabit LTE offers many of the benefits associated with 5G (e.g., high-speed data) without design challenges for businesses worldwide.  

Here are a few ideal use cases for Gigabit LTE: 

Remote Locations 

Businesses and agencies must often add network connectivity to sites and venues out of the existing infrastructure’s reach. Wired connections using copper or fiber can be extremely expensive and require long installation lead times. Deploying a cellular router to deliver Gigabit LTE broadband access to these sites is more cost-effective. In cases like natural disasters and pop-up events, it’s the only available option. 

Industrial Applications 

There are several industrial applications in which Gigabit LTE is crucial (e.g., security applications requiring high bandwidth). If a company needs to monitor remote locations with video cameras streaming 24/7, Gigabit LTE is the most reliable method.  

High-definition (HD) and ultrahigh-definition (UHD) cameras and those used in surveillance and industrial applications require high bandwidth on the uplink. However, not all Gigabit LTE modules will deliver the full specification. Gigabit LTE modules must implement two radio chains on the uplink side to provide interband carrier aggregation. Otherwise, the device will only benefit from half the network’s capacity. 

Branch Offices or New Stores 

Gigabit LTE provides an inexpensive, efficient solution for companies that must set up internet connections at branch offices or temporary stores. It requires minimal setup: The operator switches on an LTE router and provides connectivity in minutes. 

Failover Access to Reduce Downtime 

Even if an office maintains a wired connection to the internet and head office, Gigabit LTE can be a backup system. Downtime can be expensive, costing a small business about $423 per minute and large companies around $9,000 per minute. A Gigabit LTE backup system costs very little by comparison and provides insurance against such losses. 

As we await denser coverage of 5G, Gigabit LTE offers an accessible and efficient solution today. 

Speak with our IoT experts today to request a project review or developer kit. 

Request a Developer Kit

Editor’s Note: This blog was originally published on 29 April 2020 and has since been updated.

参考译文
千兆LTE与5G有何不同?
千兆 LTE:高速蜂窝宽带的 4G 解决方案 5G 虽然备受关注,但已成为消费者的标配。而千兆 LTE,这种使智能手机能够实现无缓冲流媒体视频的 4G 技术,却是 5G 之前鲜为人知的前身。它是一种 4G LTE 的演进技术,能够在速度上超越有线宽带,提供可靠、稳定的移动宽带接入。 随着运营商以惊人的速度推广 5G,覆盖范围正迅速扩大。然而,千兆 LTE 已具备全球范围的广泛覆盖。5G 是一种较新的技术,采用了新的无线电波形和新的调制解调器,因此在一段时间内,5G 产品的价格将高于 4G 产品。 新的 5G 芯片组由于设备中包含众多新功能,其价格将包含溢价。与此同时,4G 设备的价格将随着大规模部署和规模经济的实现而下降。 **千兆 LTE 与 4G LTE** 第四代移动通信标准(4G)的重点是数据传输。早期的蜂窝通信标准(2G 和 3G)则以语音和文字功能为主,主要面向智能手机普及前的用户。 2011 年,用于智能手机和移动宽带通信的 LTE-Advanced(LTE-A)标准获得批准(3GPP Release 10)。该标准峰值下载速率达到 1 Gbps。 LTE-Advanced Pro(LTE-A Pro)增强了千兆 LTE 的性能。3GPP 于 2015 年左右批准了此标准(Release 13)。LTE-A Pro 将 4G 技术推向了更高层次,根据网络的高载波聚合可用性(LTE-A Pro 允许最多聚合 32 个 20-MHz 载波),其峰值下载速度可达 3 Gbps。 5G 的关键技术和策略使 LTE-A Pro 能够证明这些超高速连接的稳健性和适应性。这些连接的速度可以比有线宽带更快,具体包括: **载波聚合** 移动网络运营商(MNO)可以通过将多个频谱段的“载波”数据传输能力进行组合,来提升数据传输速度。 载波聚合将 MNO 拥有的通常不连续的载波在单一或多个频段上进行聚合,扩展数据传输的带宽和容量,从而实现更高的容量和速度。千兆 LTE 需要聚合五个或更多载波,才能将理论数据速率推高至 3 Gbps 以上。 随着 5G 占用更多频谱资源,整个行业最终将把所有设备迁移至 5G。然而,这个过程可能需要超过十年。在此期间,LTE 将继续为中端设备填补空白。 借助 3xCA,LTE 设备将实现足够的速度,以满足许多宽带使用需求。此外,对多千兆比特速度有要求的高端设备最终也将迁移至 5G。 **授权辅助接入(LAA)** 为了增加无线频谱的数据承载能力,LAA 将未授权的 5 GHz 频段与 MNO 的授权频段结合使用。授权频谱被称为“已清理频谱”,在授权区域范围内,只有授权方可以使用。 未授权频谱则可用于 Wi-Fi 等用途,这些功能同样在 5 GHz 频段上运行。LAA 必须与其他用户协调共存,通过诸如“先监听后发言”(LBT)之类的技术来识别和利用未使用的信道。 **256-QAM** 正交振幅调制(QAM)是一种高效的双域编码策略,利用幅度和频率调制在无线电波形中编码信息。QAM 数字越高,波形中可携带的信息量就越大。 在 256-QAM 之前是 64-QAM。当使用 64-QAM 时,每个编码符号可以携带 6 位信息,因此 2^6 等于 64。而在 256-QAM 中,相同的符号可以容纳 8 位数据,因此 2^8 等于 256。256-QAM 的比特率比 64-QAM 快 30%。 这种更高的数据速率意味着 256-QAM 需要比 64-QAM 更高的信噪比(SNR)。因此,当无线电处于良好接收状态并接收到强信号时,它比基于 64-QAM 的旧系统能提升 30% 的性能。 **4 x 4 多输入多输出(MIMO)技术** 当载波聚合通过多个载波实现更高带宽时,MIMO 技术则通过每个频段的多个天线路径实现类似效果。千兆 LTE 网络在基站和设备上均标准化了四个天线。这些天线提高了频谱效率和数据速率,使设备能够连接到最稳定的可用信号。 **千兆 LTE 与 5G 的对比** 尽管千兆 LTE 和 5G 技术相似,但它们之间有几个关键区别。5G 在 6 GHz 以下的可用频率范围以及超高频毫米波(mmWave)频谱(最高达 40 GHz)中引入了新的频段。4G 主要在较低频率(最高 2.5 GHz)部署,除了 3.5 GHz 的一些频段(也称为中频段)之外。 此外,4G 频谱的最大带宽限制为 20 MHz。这意味着每个 4G 载波的容量最多为 20 MHz。而 5G 定义了新的 100 MHz 带宽的频谱。我们可以想象,聚合几个载波将如何在 5G 中实现高速度。 由于毫米波频段覆盖范围小,必须进行高密度部署才能达到目标用户体验水平。显著不同于千兆 LTE 的 5G 体验需要建设新的基础设施,这将耗时较长。 另一个区别是,5G 网络可以工作在两种模式下:独立(SA)模式和非独立(NSA)模式。SA 表示系统完全基于 5G 无线电和核心网运行;NSA 则在不同模式下结合使用 LTE 和 5G 资源。 随着 3GPP Release 16 于 2020 年发布,5G 成为了关键工业流程中有线网络的可靠替代方案。这些流程目前主要依赖于各种基于线缆和光纤的时敏网络(TSN)。Release 16 中的超可靠低延迟通信(URLLC)功能,规定了链路可靠性高于 99.9999%,延迟在毫秒级。 **千兆 LTE 网络的应用与用例** 千兆 LTE 广泛的可用性和下降的连接成本,使其更易于被采用。与 5G 不同,千兆 LTE 不需要新建塔站或重新设计设备天线以满足毫米波或 URLLC 技术的需求。对于全球各地的企业而言,千兆 LTE 提供了与 5G 相关的许多优势(例如高速数据),同时避免了设计上的挑战。 以下是千兆 LTE 的一些理想用例: **偏远地区** 企业和机构通常需要在现有基础设施无法覆盖的地点和场所增加网络连接。使用铜缆或光纤的有线连接成本极高,且安装周期长。在这种情况下,部署一个蜂窝路由器以提供千兆 LTE 宽带接入,是一种更具成本效益的解决方案。在自然灾害或临时活动等场景下,这甚至是唯一可行的选择。 **工业应用** 在许多工业应用中,千兆 LTE 至关重要(例如需要高带宽的安全监控应用)。如果一家公司需要 24/7 不间断地通过视频监控远程地点,千兆 LTE 是最可靠的解决方案。 高清(HD)和超高清(UHD)摄像头,尤其是用于监控和工业场景的摄像头,要求上行链路具备高带宽。然而,并非所有千兆 LTE 模块都能提供完整规格。千兆 LTE 模块必须在上行链路上实现两个无线电链路,才能提供带间载波聚合。否则,设备将只能利用网络容量的一半。 **分支机构或新开门店** 对于需要在分支机构或临时门店设置互联网连接的企业而言,千兆 LTE 提供了一个高效且可访问的解决方案。 **备用系统** 在等待 5G 更密集覆盖的同时,千兆 LTE 提供了今日即可实现的高效解决方案。 立即与我们的物联网专家联系,申请项目评估或开发者套件。 **编辑注:** 本文最初于 2020 年 4 月 29 日发布,此后已更新。
您觉得本篇内容如何
评分

评论

您需要登录才可以回复|注册

提交评论

提取码
复制提取码
点击跳转至百度网盘